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Abstract A prototype precipitation retrieval algorithm over land has been developed by utilizing 4 year
National Mosaic and Multi-Sensor Quantitative Precipitation Estimation and Special Sensor Microwave
Imager/Sounder coincident data sets. One of the unique features of this algorithm is using the ancillary
parameters (i.e., surface type, surface temperature, land elevation, and ice layer thickness) to stratify the
single database into many smaller but more homogeneous databases, in which both the surface condition
and precipitation vertical structure are similar. It is found that the probability of detection (POD) increases
about 8% and 12% by using stratified databases for rainfall and snowfall detection, respectively. In addition,
by considering the relative humidity at lower troposphere and the vertical velocity at 700 hPa in the
precipitation detection process, the POD for snowfall detection is further increased by 20.4% from 56.0%
to 76.4%. The better result is evident in both ends of the retrieved rain rate when the stratified databases
are used, especially when the rain rate is greater than 30 mm/h. Similarly, the retrieved snowfall rate using
stratified databases also outperforms that using single database. The correlation between retrieved
and observed rain rates from stratified databases is 0.63, while it is 0.42 using the single database. The
root-mean-square error is reduced by 50.3% from 2.07 to 0.98 by using stratified databases. The retrieved
snow rates from stratified database are also better correlated with observations and possess smaller
root-mean-square error. Additionally, the precipitation overestimation from the single database over
the western United States is largely mitigated when the stratified databases are utilized. It is further
demonstrated that over the majority of the stratified databases, the relationship between precipitation
rate and brightness temperature is much closer to that from the corresponding category in the validation
databases, rather than that from the single database. Therefore, overall superior performance using the
stratified databases for both the precipitation detection and retrieval is achieved.

1. Introduction

Accurate measurement of precipitation is of critical importance for many applications ranging from
short-term weather analysis and prediction to long-term climate monitoring. Satellite observations from
microwave radiometers provide the opportunity to measure precipitation on the global scale. Numerous pre-
cipitation retrieval algorithms using satellite microwave observations have been developed over land in the
past several decades.

In the early work, the rainfall rate over land is simply derived from the brightness temperature (TB) at high
frequency (e.g., 85 GHz) without considering either cloud vertical structure or land surface condition. For
example, Spencer et al. [1989] utilized the “polarization-corrected temperature” (PCT) to detect and retrieve
rainfall over land. The PCT is almost identical to TB at 85 GHz over land. The “scattering index” (SI), which is
calculated based on TB at 85 GHz, was initially proposed by Grody [1991] and later improved by Ferraro et al.
[1994] and Ferraro and Marks [1995] to identify and retrieve rainfall over land. This method serves as the basis
for Tropical Rainfall Measurement Mission facility rain retrieval algorithm over land. Adler et al. [1993] directly
used the TB at 85 GHz to retrieve rainfall over land areas. Liu and Curry [1992] attempted to use both emission
and scattering signature to retrieve rainfall. However, over land it is still the TB at high frequency that provides
the majority of the rainfall information. These types of algorithms have difficulties to capture the precipitation
signature when there exists no or little ice in the cloud systems.
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It has long been recognized that stratiform and convective rainfall have much different vertical structures
[e.g., Berg et al., 2002; Hirose and Nakamura, 2004; You and Liu, 2012; Wang et al., 2012; Liu and Zipser, 2013].
More sophisticated algorithms have been developed in recent years to incorporate the stratiform and con-
vective information [Aonashi et al., 2009; Gopalan et al., 2010; Kummerow et al., 2011; Sano et al., 2013; Petty
and Li, 2013]. A convective percentage index (CPI) was proposed by McCollum and Ferraro [2003]. By doing
this, the final rain rate is calculated as a weighted average between convective and stratiform rain rates. An
improved CPI has also been used by Gopalan et al. [2010] for the rainfall retrieval over land, where a more
comprehensive data set was utilized. Storm top height estimated from TB has been used by Aonashi et al.
[2009] to identify the deep convective rainfall. They found that severe overestimation without considering
storm height is mitigated for tall precipitation cases. In Sano et al. [2013], several large-scale environmental
parameters derived from reanalysis data were utilized to roughly separate the rainfall profiles in the pre-
defined database from model simulations. It was shown that the retrieval results are improved greatly due
to the reduced ambiguity in the database. Over ocean, Kummerow et al. [2011] utilized the total precip-
itable water to identify the shallow convective regions. The total precipitable water has also been utilized
over land to identify the precipitation regimes in the most recent version of Goddard profiling algorithm
(GPROF2014), according to the GPROF2014 Passive Microwave Algorithm Theoretical Basis Document, version
1.4 (http://rain.atmos.colostate.edu/ATBD/).

Another major obstacle for precipitation retrieval over land is the high and highly variable land surface
emissivity. Unlike the emissivity over ocean, it is difficult to accurately calculate the emissivity over land,
especially under raining conditions [e.g., Prigent et al., 2006; Wang et al., 2009; Ferraro et al., 2013; Turk et al.,
2013; You et al., 2013]. To take the emissivity influence into consideration, Aonashi et al. [2009] described
a scheme in which the entire globe is divided into thousands of 5 × 5∘ grid boxes for each season.
Look-up tables are constructed for each grid box in each season. The land surface is divided into six dif-
ferent types based on the clear-sky TBs in Petty and Li’s [2013] work. In the GPROF2014 algorithm for the
Global Precipitation Measurement (GPM) satellite, the land surface type information derived from the Tool
to Estimate Land-Surface Emissivities at Microwave frequencies (TELSEM) [Aires et al., 2011] has also been
used. To avoid the surface emissivity effects, instead of using the signatures from window channels (e.g.,
85GHz), Staelin and Chen [2000] introduced a different technique to estimate surface precipitation which
depends solely on microwave observations near opaque water vapor and oxygen absorption channels
(183 GHz and 52 GHz).

Commonly, the precipitation detection is performed for each new observation before the actual precipitation
retrieval algorithm is applied. Most of the rainfall detection techniques [e.g., Grody, 1991; Ferraro et al., 1994;
Adler et al., 1994; Conner and Petty, 1998; Seto et al., 2005; Kacimi et al., 2013] utilized the scattering index (SI)
concept proposed by Grody [1991]. A comprehensive review of SI technique for rainfall detection can be found
in Seto et al. [2005]. It is worth mentioning that in Petty and Li’s [2013] algorithm, no rain detection procedure is
employed, and therefore, the retrieved rain rate for each new observation will always be a nonnegative value,
no matter how small it is. It depends on the users to decide whether to treat a pixel as raining or nonraining
based on the magnitude of the retrieved rain rate. Unlike rainfall detection, snowfall detection has a much
shorter history and is still at a very early stage of development. Several snowfall detection techniques have
been developed [e.g., Kongoli et al., 2003; Skofronick-Jackson et al., 2004; Liu and Seo, 2013], and it is generally
agreed that TB at high frequencies (> 80 GHz) is capable of detecting the falling snow [e.g., Katsumata et al.,
2000; Bennartz and Bauer, 2003; Skofronick-Jackson et al., 2013]. Recently, Turk et al. [2013] proposed a linear
discriminant analysis (LDA) technique for rainfall detection. It was shown that the detection performance is
superior to the traditional SI method, especially in the winter season. This technique will be adopted into our
current work for both rainfall and snowfall detection, with some modifications (see section 3).

None of the aforementioned algorithms have taken both rain vertical structure and surface condition into
consideration for detecting and estimating the surface precipitation from TBs. On the one hand, TB measured
by a passive microwave radiometer reflects the integrated effects of ice and water paths, not surface rain
rate; therefore, different TBs resulting from different rain vertical structures could very possibly correspond
to similar surface rain rate [e.g., Kummerow et al., 2011; You and Liu, 2012]. On the other hand, large retrieval
uncertainties could also be caused by the different land surface backgrounds (e.g., dense vegetation ver-
sus bare ground) due to the large variation of the surface emissivities. Although the high-frequency channel
(e.g., 85 GHz) is “blind” to the surface when the precipitation is heavy, the effect from the land surface is not
negligible for the light precipitation, as shown by You [2013]. Further, previous work has shown that includ-
ing low-frequency channels into the rainfall retrieval algorithm development could also be very beneficial.
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For example, Aonashi et al. [2009] pointed out that by including the TB at 37 GHz in the retrieval process, it
was found that severe overestimation is mitigated for deep precipitation systems. Two low-frequency chan-
nel combination contains both liquid and ice information, as shown by You et al. [2011]. To better use the
low-frequency channels, the surface emissivity information is indispensable.

Therefore, the primary objective of this study is to develop a new precipitation retrieval algorithm by con-
sidering both land surface condition and precipitation vertical structure. Toward this end, several physical
parameters will be used to stratify the single database into many smaller but more homogeneous databases
for precipitation detection and retrieval. Our goal is to make sure both the surface condition and precipita-
tion vertical structure are as homogeneous as possible in each stratified database. By doing this, the degree of
the nonuniqueness for the solution in the inversion process will be alleviated by narrowing down the search
region in the Bayesian retrieval technique. We will compare the precipitation detection performance and the
retrieval result from the single database and that from stratified databases throughout this paper.

2. Data

The primary data used in this study include 5 min, 1 km gridded National Mosaic and Multi-Sensor Quantitative
Precipitation Estimation (NMQ) [Zhang et al., 2011] and Special Sensor Microwave Imager/Sounder (SSMIS)
data sets [Yan and Weng, 2008] with 13 TBs at frequencies of 19.4 (V/H), 22.2 (V), 37.0 (V/H), 52.8 (V), 54.4
(V), 91.7 (V/H), 150.0 (H), 183.3 ± 1 (H), 183.3 ± 3 (H), and 183.3 ± 7 (H) GHz (V = vertical and H = horizontal
polarizations). Hereafter, these channels will be referred to as H19, V19, …, H183 ± 7 for convenience. Data
from 2010 to 2013 are used over the land portion of the domain from 25∘–50∘N, 70∘–130∘W.

It is worth mentioning that four Z-R relationships are utilized to link the radar reflectivity and precipitation
rate in the NMQ product, i.e., Z = 300R1.4, Z = 200R1.6, Z = 230R1.25, and Z = 75R2.0 for convective, strati-
form, warm rain, and snowfall, respectively. The justification for using separate Z-R relation for different cloud
systems are provided by Zhang et al. [2011]. Additionally, previous work [Chen et al., 2013; Tang et al., 2014]
showed that there exist biases in the NMQ rain rates over the targeted regions in this study, compared with rain
gauge-corrected observations (e.g., Stage IV precipitation products). However, the NMQ precipitation has the
highest temporal resolution (5 min), which ensures that enough matched-up samples are obtained. We would
like to clarify that the purpose of this study is not to define the climatology of precipitation using the NMQ
data. Instead, we use the NMQ observations as the common ground reference to compare the precipitation
retrieval results from the single database to that from stratified databases.

Ancillary data sets employed in this study include surface type derived from clear-sky microwave climatol-
ogy emissivity TELSEM [Aires et al., 2011], Modern-Era Retrospective Analysis for Research and Applications
(MERRA) reanalysis data [Rienecker et al., 2011], and land elevation [Hastings and Dunbar, 1998]. The entire
globe is divided into 11 surface types based on the monthly clear-sky emissivity from multisensor observa-
tions, and the monthly surface type index is gridded at 0.25∘ spatial resolution. The relative humidity, vertical
velocity, geopotential height, and temperature profiles from MERRA reanalysis data are provided eight times
daily at an approximate 0.5∘ resolution from the 3-D instantaneous state on pressure level data product and
every hour for surface temperature data from the 2-D surface and radiation flux data product. The freezing
level height has also been calculated from MERRA reanalysis data set. Similarly to Harris et al. [2000], linear
interpolation of the temperature profile at each grid point is utilized to find the geopotential height of the
0∘C isotherm, and then the corresponding geopotential height is taken as the freezing level height for that
grid. The Global Land One-Kilometer Base Elevation was provided by the National Geophysical Data Center
of National Oceanic and Atmospheric Administration (NOAA).

The spatial resolutions among various SSMIS channels are different, and they also differ from the NMQ resolu-
tion. To analyze coincident data from all these channels, data collocation was performed, as follows. First, the
resolution at V37 (31 × 41 km) is taken as the nominal resolution. The nine closest pixels at higher frequen-
cies from 91 GHz to 183.3 ± 7 GHz are chosen, and then the TBs from these nine pixels are simply averaged
to represent the TBs for the aforementioned higher frequencies at the 37 GHz resolution. For lower frequency
channels (i.e., 19 GHz and 22 GHz) their original coarser spatial resolution has been used in this study. That
is, the closest neighbor pixel to the V37 GHz pixel is chosen. Many resolution enhancement techniques have
been developed in the past [e.g., Farrar and Smith, 1992; Bauer and Bennartz, 1998; Rapp et al., 2009]. While
these approaches bring better matching resolution among all the channels, they also introduce noise by the
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resolution enhancement. In this study, we decided to work with the original resolution for data at the lower
frequencies. This collocation process is similar to that by Viltard et al. [2006] and You et al. [2011]. The precipita-
tion rates at the closest 1271 (31×41) NMQ 1 km grid points to each 37 GHz pixel are simply averaged, which is
taken as the precipitation rate at the 37 GHz resolution. For all other data (surface type, surface temperature,
and land elevation), we use data from the closest grid. Temporally, surface temperature, vertical velocity, and
relative humidity temperature profiles are linearly interpolated to match the time of the TB observation.

3. Methodology

As mentioned in section 1, one of the unique features in our retrieval algorithm is to make both the sur-
face condition and precipitation vertical structure as similar as possible in detection and retrieval processes.
Toward this end, in the detection, three parameters (land surface type, surface temperature, and land eleva-
tion) are used to stratify the single database into many smaller but more homogeneous categories. The linear
discriminant analysis (LDA) technique is then employed to detect the precipitation. In the retrieval, one more
parameter (i.e., the ice layer thickness), calculated from the difference between the storm top height and the
freezing level height, is used to stratify the single database first, and then the Bayesian algorithm based on the
principal component analysis is used for precipitation retrieval. More information regarding the parameters
selection and effectiveness will be discussed in the following sections.

Similar to Aonashi et al. [2009], in the radiometer-only retrieval algorithm, the storm top height is estimated
by TBs. In this work, the TB difference (V19−V91) is utilized to estimate the storm top height through a simple
regression technique. Then the ice layer thickness is computed by the storm height minus the freezing level
height (FLH), where FLH is obtained from MERRA temperature and geopotential height profiles. Using TBs at
higher frequencies (e.g., H150 and H183 ± 7) will generate similar ice layer thickness indices.

3.1. Linear Discriminant Analysis
The linear discriminant analysis (LDA) approach is used for both rainfall and snowfall detection in the present
study. In essence, the LDA approach condenses a large number of variables into one single variable while
keeping as much discriminatory information as possible. To put it into perspective, suppose there exist two
training databases (e.g., rain versus nonrain databases), which contain multivariables yyy (e.g., TBs, relative
humidity, and vertical velocity) in each database. According to Wilks [2011] the linear discriminant function
to distinguish these two groups is

𝛿1 = aaa′ × yyy (1)

where ′ stands for the transpose and aaa is the discriminant vector, calculated in the following way:

aaa = [SSS−1
pool]( ȳyy1 − ȳyy2) (2)

[SSSpool] =
n1 − 1

n1 + n2 − 2
[SSS1] +

n2 − 1

n1 + n2 − 2
[SSS2]

where ȳyyi and SSSi (i = 1, 2) represent the mean vector and covariance of each group, respectively. The bold
symbols stand for a vector throughout this paper, and n1 and n2 are the samples size in these two groups,
respectively.

Similar to the name convention of the scattering index (SI), the linear discriminant function (𝛿) computed from
equation (1) is referred to as discriminant index (DI) hereafter.

It has been shown by Turk et al. [2013] that the DI outperforms the widely used SI method [Grody, 1991] for
rainfall detection, especially in winter months.

3.2. Principal Component Analysis-Based Bayesian Algorithm
The current widely used Bayesian retrieval algorithm for precipitation and clouds can be dated back at least
to Rodgers [1976] and Lorenc [1986]. To be consistent with the symbols used in the precipitation retrieval
community, we will use x to represent the precipitation rate and TTT to represent the TBs. In order to obtain x,
one can apply Bayes’ theorem:

f (x|TTT) = f (TTT|x) × f (x)
f (TTT)

= f (TTT|x) × f (x)
∫ f (TTT|x) × f (x)dx

(3)

YOU ET AL. STRATIFY THE SINGLE DATABASE 5298



Journal of Geophysical Research: Atmospheres 10.1002/2014JD022534

where f (x|TTT) stands for the posterior probability density function (PDF) of x given the measured TTT , f (x) is the
prior PDF of x, and f (TTT|x) is the likelihood function of TTT given the precipitation rate x. Equation (3) serves the
foundation of Bayesian retrieval algorithm [e.g., Evans et al., 1995; Kummerow et al., 1996; Chiu and Petty, 2006;
Noh et al., 2006; Kim et al., 2008; Munchak and Skofronick-Jackson, 2013; Sano et al., 2013; Petty and Li, 2013].

From equation (3), there exist two ways to obtain the expected value of x, given TTT . One way [e.g., Evans et al.,
1995; Chiu and Petty, 2006] draws samples from the posterior PDF. The other way directly uses the likelihood
function and the prior PDF to calculate the expected value of x, given TTT , without knowing the form of the
posterior PDF [e.g., Kummerow et al., 1996; Evans et al., 2002; L’ecuyer and Stephens, 2002]. The details of the
latter approach can be mathematically stated as follows:

E[x|TTT] = ∫ xf (x|TTT)dx

=
∫ x × f (TTT|x) × f (x)dx

∫ f (TTT|x) × f (x)dx

= E[x × f (TTT|x)]
E[f (TTT|x)]

(4)

where E stands for the expectation. Using samples from prior PDF can be particularly convenient when
there exists a predefined database, from either observations or model simulations. In this study, we use this
procedure to calculate the expected value of the precipitation rate, given TTT .

In addition, the likelihood function is usually assumed to follow a multivariate normal distribution, and the
TBs are assumed uncorrelated; therefore, the covariance matrix is diagonal [e.g., Rodgers, 1976; Evans et al.,
1995; Kummerow et al., 1996; Austin et al., 2009; Evans et al., 2012]. However, it is known that the TBs at different
channels often are highly correlated. In lieu of this, we first apply the principal component analysis (PCA) to
the TBs for a given precipitation rate. Instead of using the TBs directly, we will use the first three leading PCs
in the Bayesian framework, which account for approximately 98% of total variance. In this study, we will use
uuu to represent the principal components. Details regarding the PCA technique is referred to Wilks [2011].

In our method, the log transformation has been applied to precipitation x and they are placed into n small
bins. Depending on the sample size in the database, n should be adjusted to ensure retrieval accuracy. In
each bin, we use L1, …, Ln to represent the sample size, and x1, …, xn to represent the mean value of the
precipitation rate.

In each small bin (i.e., corresponding to each xi), the PCA technique is applied to the TBs. Next, we use
equation (4) by replacing the TB variables (TTT) by principal components (uuu):

E(x|uuu) = ∫ x × f (uuu|x) × f (x)dx

∫ f (uuu|x) × f (x)dx

= E[x × f (uuu|x)]
E[f (uuu|x)]

=

n∑
i=1

Li × xi × 𝜒2
ik

n∑
i=1

Li × 𝜒2
ik

𝜒2
ik =

K∏
k=1

1√
2𝜋𝜎ik

exp

(
−1

2

(uk − 𝜇ik)2

𝜎2
ik

)
(5)

where n represents the number of the precipitation bins; K is the number of the principal components; Li and xi

are the sample size and the mean precipitation rate in the ith precipitation bin, respectively; uk is the kth prin-
cipal component; and 𝜇ik and 𝜎ik stand for the mean and standard deviation of the kth principal component
in the ith precipitation bin, respectively.

In this study, the number of the bins is 100 (i.e., n = 100) and the number of the leading PCs is 3 (i.e., K=3).
More details regarding the PCA-based Bayesian retrieval algorithm is referred to You [2013].
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Table 1. Notation for Precipitation/No-Precipitation Results Judged by NMQ and SSMIS

Precipitation Judged by NMQ No Precipitation Judged by NMQ

Precipitation judged by SSMIS a b

No precipitation judged by SSMIS c d

4. Precipitation Detection

In this section, the performance of the LDA for precipitation detection is investigated. We first determine the
precipitation type (rainfall or snowfall) by checking whether the 2 m air temperature is greater than 0∘C. It is
concluded by Liu [2008] that this threshold is rather conservative, which corresponds to a 90% rain to snow
transition probability based on multiyear ground observations. The threshold for the minimum detectable
precipitation rate is assigned to be 0.22 mm/h, according to Munchak and Skofronick-Jackson [2013]. Then the
rain/no-rain and snow/no-snow databases are constructed separately.

For precipitation detection, three parameters (surface type, surface temperature, and land elevation) are
employed to stratify the single database into many smaller but more homogeneous databases. It is worth
mentioning that these three parameters are not chosen randomly. The surface temperature and surface type
(derived from emissivity climatology) largely reflects the background emission from the land surface. Addi-
tionally, Gebregiorgis and Hossain [2013] showed that the uncertainties in the satellite-derived rainfall product
has clear dependence on the elevation, and therefore, it is worthwhile to assimilate this information into the
precipitation retrieval algorithm.

The performance of the precipitation detection is measured by the probability of detection (POD) and false
alarm rate (FAR), which are defined by the following equations according to Wilks [2011]:

POD = a
a + c

FAR = b
b + d

(6)

where the definitions for a, b, c, and d are referred to Table 1.

By changing the threshold value for the DI, the corresponding POD to the FAR at 0.05 for rainfall and 0.10 for
snowfall is used to judge the performance of the precipitation detection. Larger POD indicates better precip-
itation detection performance. A detailed example will be provided in the next section to show how exactly
this approach works. It is worth mentioning that the FAR threshold numbers (0.05 for rainfall and 0.10 for snow-
fall) are selected somewhat arbitrarily. Choosing other thresholds will only affect the numerical values of the
statistics in the following study, not the conclusions. In reality, the thresholds should be adjusted depending
on different applications (e.g., drought versus flood monitoring).

4.1. Single Database Versus Stratified Databases for Precipitation Detection
Basically, there are two possible ways to judge an observed pixel as a precipitation or no-precipitation pixel.
One way is to compare this pixel with all the historical pixels in the single historical database. Alternatively,
based on the surface type, surface temperature, and land elevation, one could first find which stratified
database this pixel belongs to. Then this pixel is only compared with that in the same stratified database. For
example, it is well known that the microwave radiometric signature from different surface backgrounds (e.g.,
forest, desert, and snow/ice-covered land) differs greatly. Therefore, it is better to compare a newly obtained
observation over desert with only the historical observations over desert. In this section, we will use real
observations to demonstrate that the latter philosophy is more effective for precipitation detection.

For rainfall detection, the original surface types are regrouped into 5 categories due to data sample size issue,
including dense vegetation (1), medium vegetation (2), sparse vegetation (3–5), ice and snow–covered land
(6–9), and coast (10). The numbers in parentheses are the original surface type index in the emissivity clima-
tology database [Prigent et al., 2006]. The surface temperature is grouped into three categories. The thresholds
are the values corresponding to 33.3% and 66.7% of the surface temperature. The land elevation is divided
into two categories using 500 m as the threshold. Using these three parameters, the single database for rainfall
detection can then be stratified into 30 smaller groups.

To make the reader familiar with the LDA precipitation detection technique, we show the histograms of the
DI derived from the single rain/no-rain database in Figure 1. For visual inspection, each histogram is scaled
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Figure 1. (a) Histograms of the discriminant index (DI) derived from the single database for nonraining (red line) and
raining scenes (blue line). Both histograms have been scaled by the corresponding maximum value in each histogram.
(b) Probability of detection (POD) versus false alarm rate (FAR) by choosing different thresholds for DI. The red dashed
line stands for the FAR at 0.05.

by its maximum value of the corresponding histogram. Figure 1a shows the histograms of the DI for rain and
nonrain scenarios in the single database, which are overlapped. By choosing different critical values of DI for
rain detection from −10 to 30, many corresponding PODs and FARs are obtained from equation (6), shown in
Figure 1b, where the red dashed line represents FAR at 0.05. It can be seen that the POD is directly proportional
to FAR. In this study, the corresponding POD to the FAR at 0.05 (0.10) is selected for rainfall (snowfall) to judge
the detection performance. Again, we would like to emphasize that both threshold values (0.05 for rainfall
and 0.10 for snowfall) are selected somewhat arbitrarily and should be adjusted for different applications.
However, choosing different values will not change the conclusions in this study.

For rainfall detection using the single database, the POD is 75.9% using the training data set from 2010 to 2013.
The average POD from 30 stratified rainfall databases is increased by 8.1% to 84.0% when applying the LDA
to stratified databases (Table 2). The similar detection procedure is applied to the snowfall. It is found that by
stratifying the single database, the POD increases 12% from 56.0% to 68.0% for snowfall detection (Table 3). It
is worth mentioning that we group the single database into 12 smaller categories for snowfall detection due
to data availability issue, by dividing the original surface type into vegetation (1–5), ice and snow–covered
land (6–9), and coast (10); the temperature into two categories (less or greater than 268 K, the 50.0% value);
and the elevation into two categories (less or greater than 500 m).

To summarize, by using the stratified databases, the POD increases approximately 8.1% and 12.0% for rainfall
and snowfall detection, respectively.
4.2. Influence of Other Environmental Parameters to the Precipitation Detection
Besides the surface type, surface temperature, and land elevation, which have been used to stratify the single
database into many more homogeneous databases for precipitation detection, previous work also showed
that several other large-scale environmental parameters may also be related to the precipitation process to a
certain degree. These parameters include average relative humidities at lower troposphere from 1000 hPa to
700 hPa and at higher troposphere from 700 hPa to 300 hPa, vertical velocities at 500 hPa and 700 hPa, sur-
face equivalent potential temperature, moisture flux 50 hPa above surface and convective available potential
energy [Liu and Fu, 2001; Hirose and Nakamura, 2004; Liu and Zipser, 2013; Smith et al., 2013]. These param-
eters could also be used to further stratify the single database. However, by doing this, the number of the
categories will increase dramatically and the sample size will be too small in each category to perform mean-
ingful statistical analysis. Instead of further stratifying the databases, the aforementioned seven parameters

Table 2. Probability of Detection (POD, %) for Rainfall From the Single
Database or Stratified Database, and With/Without Considering the Vertical
Velocity (𝜔) at 700 hPa and the Relative Humidity (rh) at the Lower
Troposphere (1000–700 hPa)

Without (𝜔, rh) With (𝜔, rh)

Single database 75.9 78.5

Stratified database 84.0 85.1
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Table 3. As in Table 2 Except for Snowfall

Without (𝜔, rh) With (𝜔, rh)

Single database 56.0 67.2

Stratified database 68.0 76.4

are treated just like TBs in the LDA detection process. We are going to test how much improvement can be
achieved by adding these variables (besides the TBs) in the LDA detection process.

These seven variables are added into the LDA approach in a stepwise fashion. That is, we will include the TBs,
along with the first parameter, the first two parameters, until all seven parameters are included. It was found
that by only adding relative humidity (rh) at lower troposphere and vertical velocity at 700 hPa (𝜔), the POD
improvements are very similar to that by adding all seven parameters. Specifically, for rainfall detection, the
POD increases from 84.0% to 85.4% by adding all seven parameters for stratified databases. On the other hand,
by only adding the rh and 𝜔, the POD is increased to 85.1%. For the single database, the PODs are almost
identical with only 0.2% difference between adding all seven variables and adding only rh and 𝜔 variables.
For snowfall detection, the POD positive difference between adding seven variables and adding two variables
(rh and 𝜔) is 1.5% and 1.7% for using the single database and stratified database, respectively. Therefore, we
decided that only these two variables (relative humidity at the lower troposphere and vertical velocity at 700
hPa) are kept for further analysis. The relative humidity at the lower troposphere represents the degree of the
saturation of the large-scale environmental background. Higher relative humidity is generally associated with
larger possibility of precipitation. In addition, the vertical velocity at 700 hPa represents the instability of the
large-scale environment. In general, strong upward motion (i.e., large negative vertical velocity) is indicative
of possible precipitation.

It is shown in Table 2 that the relative humidity and vertical velocity have relatively weaker influence for rainfall
detection. The PODs only increase from 75.9% to 78.5% for the single database and from 84.0% to 87.6% for
stratified databases. In contrast, for snowfall detection the PODs increase by 11.2% from 56.0% to 67.2% for the
single database and 8.4% from 68.0% to 78.4% for stratified databases by adding these two variables (Table 3).
It is hypothesized that the large-scale factors (relative humidity and vertical velocity) play more important
roles in the snowfall genesis, which tends to be more stratiform in nature, compared with that in the rainfall
genesis, which may include both stratiform and convective types.

To summarize, it is demonstrated that by using the stratified databases and adding the relative humidity at
lower troposphere and vertical velocity at 700 hPa, the POD increases by 20.4% from 56.0% to 76.4% for snow-
fall detection. For rainfall detection, using stratified databases, the POD increases 8.1% from 75.9% to 84.0%.
However, by adding the two large-scale environmental variables (rh and 𝜔), the POD improvement is rela-
tively small. Particularly, it increases by 2.6% from 75.9% to 78.5% using the single database and by 1.1% from
84.0% to 85.1% using stratified databases. Therefore, for rainfall detection, only the TBs are considered in the
LDA techniques, while the relative humidity at lower troposphere and vertical velocity at 700 hPa are included
besides the TBs for snowfall detection.

The detection statistics are summarized in Tables 2 and 3. It is worth mentioning that all these analyses are
based on the training data set from 2010 to 2012. Similar analyses are conducted using the validation data
set (2013), and very similar detection performances are obtained.

In addition, we would like to emphasize that only the clear-sky radiances (i.e., TBs) are assimilated into the
MERRA reanalysis data set. And the relative humidity and vertical velocity are purely from the model output,
which have not been adjusted by the simultaneous satellite observations. Therefore, the improvement, by
including these two variables in the precipitation detection process, is unlikely caused by the redundant use
of the TBs within the MERRA data and the LDA method.

5. Precipitation Retrieval
5.1. Effectiveness of Categorizing Parameters
To construct the rainfall and snowfall databases for precipitation rate retrieval, four parameters (surface type,
surface temperature, land elevation, and ice layer thickness) are used to stratify the single database.

YOU ET AL. STRATIFY THE SINGLE DATABASE 5302



Journal of Geophysical Research: Atmospheres 10.1002/2014JD022534

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
8

12

16

20

24

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 H

19
Rainfall

(a)

1 mm/hr

5 mm/hr

10 mm/hr

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
10

15

20

25

30

35

40

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 H

18
3±

7

Rainfall

(b)

1 mm/hr

5 mm/hr

10 mm/hr

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
6

8

10

12

14

16

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 H

19

Snowfall

(c)

1 mm/hr

3 mm/hr

5 mm/hr

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5
6

8

10

12

14

16

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 H

18
3±

7

Snowfall

(d)

1 mm/hr

3 mm/hr

5 mm/hr

Figure 2. (a) Under different scheme designs, standard deviation of brightness temperature at H19 corresponding to 1, 5, and 10 mm/h surface rain rate.
Schemes 1–5, in order, stand for using the single database, using databases stratified by one parameter (surface type), using databases stratified by two
parameters (surface type and surface temperature), using databases stratified by three parameters (surface type, surface temperature, and land elevation), and
using databases stratified by four parameters ( surface type, surface temperature, land elevation, and ice layer thickness). (b) Same as Figure 2a except at
H183 ± 7. (c) Same as Figure 2a except for snowfall corrsponding to 1, 3, and 5 mm/h surface snow rate. (d) Same as Figure 2c except at H183 ± 7.

The primary objective is to make sure that both the surface condition and precipitation vertical structure
are as similar as possible in each stratified database. In other words, for the same surface rain rate, the vari-
ation of the TBs in the stratified databases should be smaller compared with that in the single database.
TBs at H19 and H183 ± 7 are selected to illustrate the effectiveness of the aforementioned four parameters,
since these two channels are the most sensitive indicators to the surface condition and precipitation vertical
structure, respectively.

We compared the standard deviation in the single database and the mean of the standard deviations in
stratified databases, corresponding to the same surface rain rate. The comparison is performed in a stepwise
fashion. First, the standard deviations of the TBs at H19 and H183±7 are computed in the single database, cor-
responding to 1, 5, and 10 mm/h surface rain rate. Next, the surface type is used to stratify the single database.
There are five and three smaller databases for rainfall and snowfall when the surface type is used to stratify the
single database, respectively. In each smaller database, the standard deviation of the TB at H19 is calculated
and then the mean of these standard deviations are obtained. Further stratification is conducted by adding
other three parameters one by one. For convenience, only using the single database for standard deviation
calculation is named as scheme 1; databases stratified by surface type as scheme 2; databases stratified by
surface type and surface temperature as scheme 3; databases stratified by surface type, surface temperature,
and land elevation as scheme 4; and databases stratified by surface type, surface temperature, land elevation
and ice layer thickness as scheme 5.

The result is shown in Figure 2. It is obvious that corresponding to 1 mm/h rainfall (Figure 2a), the standard
deviation of H19 decreases from 20 to 12 by using the surface type, surface temperature, and land elevation
(i.e., from scheme 1 to scheme 4), while the ice layer thickness parameter appears to have very little influence
on the standard deviation of H19 (scheme 5), as we have expected. Similar variation reduction characteristics
at H19 are observed corresponding to 5 and 10 mm/h surface rain rate (Figure 2a). On the other hand, corre-
sponding to the same surface rain rate (i.e., 1, 5, and 10 mm/h), a large decrease of the standard deviation at
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Figure 3. Two-dimensional Heidke Skill Score (HSS) plot to quantify the correspondence between NMQ and SSMIS
instantaneous rain rate estimates in 2013. (a) The rain rates are estimated from the single database. (b) The rain rates are
estimated from stratified database.

H183 ± 7 is observed only after including the ice layer thickness parameter, while the other three parameters
have very little influence on the TB at H183 ± 7 (Figure 2b).

For snowfall, a similar result is found when applying these four parameters to snowfall databases
(Figures 2c–2d). For example, corresponding to 1 mm/h snow rate, the standard deviation of the TB at H19 in
the single database is approximately 14 (scheme 1), while the standard deviation in the stratified databases
(scheme 4) is reduced to 8. However, for snowfall we would like to point out that the standard deviation at
H183±7 GHz shows little variation corresponding to 1 mm/h snowfall, even after using the ice layer thickness
parameter. It is hypothesized that the water vapor probably masks out the signal from ice scattering when the
snowfall rate is 1 mm/h. The decrease of the standard deviation at H150 is evident, even for 1 mm/h snowfall
(not shown).

In summary, it is concluded that compared with the single database, the four selected parameters (surface
type, surface temperature, land elevation and ice layer thickness) are effective in reducing the variation of the
TBs, corresponding to the same surface rain rate. Specifically, the first three parameters (surface type, surface
temperature, and elevation) largely characterize the surface condition, while the ice layer thickness parameter
largely captures the precipitation vertical structure information.

5.2. Results From Single Database Versus Those From Stratified Databases
To compare the performance of precipitation retrieval by using the single database or stratified databases,
the widely used 2-D Heidke Skill Score (HSS) [Conner and Petty, 1998; McCollum and Ferraro, 2003; Liu and Seo,
2013] is shown in Figure 3 for rainfall retrieval result. The 2-D HSS plot shows the probability distribution of
the retrieved rain rates, taking the NMQ observed rain rates as references. The HSS is 1 when the retrieved

Figure 4. As in Figure 3 except for snowfall.
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Figure 5. Scatterplot of the SSMIS estimated rain rates from stratified databases and NMQ observed rain rates at 0.1∘ in
(a) spring, (b) summer, (c) fall, and (d) winter.

precipitation rates perfectly match the observations. On the other hand, the HSS is 0 when the retrieved pre-
cipitation rate behaves randomly corresponding to observed precipitation rates. The superiority (larger HSS)
of the retrieved rain rate using the stratified databases is readily observed, especially when rain rate is less than
3 mm/h or greater than 20 mm/h. Physically speaking, the larger HSS indicates that the retrieved rain rates
using the stratified databases more likely agree with the observations. In particular, using the single database,
there is no skill at all when the rain rate is larger than 35 mm/h (Figure 3a), whereas the stratified database
exhibits limited skill at the extreme condition. In Figure 4, a similar plot is shown for snowfall retrieval result.
The retrieved result from stratified databases outperforms that from the single database, indicated by the
larger HSS from 0 to 8 mm/h.

We have also analyzed the retrieved results by comparing the observed and retrieved precipitations at 0.1∘

resolution, shown in Figures 5 and 6. The correlation between retrieved and observed rain rates increases from
0.42 for the single database to 0.63 for stratified databases. On the other hand, the root-mean-square error
(rmse) decreases approximately 53.2% from 2.07 to 0.98 when stratified databases are used. Figure 5 shows
the scatterplots between NMQ observed rain rates and retrieved rain rates from SSMIS from all four seasons,
using stratified databases. Compared with the results from the single database (Figure 6), it is clear that from
spring to fall the retrieved rain rates from stratified databases possess larger correlations and smaller rmse.
Particularly, in these three seasons the overestimation of the rain rate from the single database when the
observed rain rate is less than 4 mm/h is alleviated in the result from stratified databases. This characteristic
contributes greatly to the large rmse decrease from spring to fall. In the winter season, it seems the results
from the single database and stratified database are comparable. However, the underestimation from the
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Figure 6. As in Figure 5 except estimated rain rates from the single database.
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Figure 7. Scatter plot of SSMIS estimated snow rates and NMQ observated snow rates at 0.1∘ resolution in 2013
(a) using the single database and (b) using stratified databases.
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(a)

(b)

(c)

Figure 8. Geospatial distribution of the estimated and NMQ observed rain rate in the summer season (June, July, and
August). (a) Average rain rates at 1∘ resolution from NMQ observations. (b) Differences between SSMIS estimated rain
rates using stratified databases and NMQ observed rain rates. (c) Differences between SSMIS estimated rain rates using
the single databases and NMQ observed rain rates.

single database is more severe when the observed rain rate is greater than 8 mm/h. In the winter season, the

convective cloud systems are less frequent and not as intense as those in the other three seasons [Zipser et al.,

2006] over the continental United States, so the dynamic range of the rain rate is relatively smaller. When the

Bayesian retrieval framework is applied, it is less likely to obtain retrieved rain rates far from observed rain

rate since the Bayesian algorithm in essence is an optimal weighted average. This explains why the retrieval

improvement using the stratified databases in the winter season is marginal.
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Figure 9. As in Figure 8 except in the winter season (December, January, and February).

Similar analysis has also been performed for snowfall. It is noted that using stratified databases will improve
the retrieval result as indicated by increased correlation from 0.39 for the single database to 0.47, shown in
Figure 7. The rmse is also reduced from 0.24 to 0.19. It is noted that the rmse deduction is relatively small,
compared with that in the rainfall retrieval results from spring to fall. Again, the much smaller dynamical range
of the snow rates in the database makes it less likely to produce retrieved snow rates dramatically further
apart from observations.

Overall, the superior performance, indicated by larger Heidke Skill Score (HSS), is observed for the retrieved
precipitation from stratified databases, compared with that from the single database. In addition, when using
the stratified databases, the correlation coefficients between retrieved rain rates and observations increases
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(a)

(b)

(c)

Figure 10. (a) Average snow rates at 1∘ resolution from NMQ observations. (b) Differences between SSMIS estimated
snows using stratified databases and NMQ observed snow rates. (c) Differences between SSMIS estimated snow rates
using the single databases and NMQ observed snow rates.

from 0.42 to 0.63, while the root-mean-square error decreases about 53% from 2.07 to 0.98. Noticeable
improvements have also been achieved by using stratified databases for snowfall retrieval.

5.3. Spatial Distribution of the Precipitation from the Single Database and Stratified Databases
In this section, the spatial distribution of the retrieved precipitation from both the single database and
stratified databases is investigated, shown in Figures 8–10, along with the NMQ observations.

Compared with the NMQ observed rain rates in summer (Figure 8a), there exists slight underestimation over
the majority of the eastern United States for the retrieved rain rates from stratified databases (Figure 8b).
There are also some regional overestimations over the northeast part of the study region. The underestimation
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Figure 11. (a) The correlation difference between observed and
retrieved rain rates from stratified databases and from the single
database in each category. (b) The root-mean-square error (rmse)
difference between observed and retrieved rain rates from stratified
databases and the single database.

of the retrieved rain rates from the sin-
gle database is also obvious over the
majority of the eastern United States.
Previous work [e.g., Lin and Hou, 2008]
showed that the passive microwave sen-
sors has the tendency to underestimate
the rain rates from severe convective
storms. Our results share this common
problem, which is also clear in Figures 5b
and 6b (rain rate> 15 mm/h). Further, the
most striking feature for the retrieved
rain rates from the single database is
that there exist systematical overestima-
tion from central to western United States
(Figure 8c). It has long been realized that
corresponding to same surface rain rate
the precipitation clouds system over arid
(e.g., western United States) surface back-
ground are more intense [You and Liu,
2012], which will lead to lower TBs. The
mitigation of this overestimation in the

retrieved rain rates from stratified databases is clearly indicated (Figure 8b). For the rain rate in the winter
season (Figure 9), the results from the single database and stratified databases are comparable, which agrees
with the results in the previous section (Figures 5d and 6d). For snowfall retrieval result, the overestimation
over the western United States is clearly reduced when the stratified databases are utilized (Figure 10b).

In summary, the spatial distribution pattern of the retrieved precipitation agrees better with observed pre-
cipitation pattern when the stratified databases are used. The overestimation over the western United States
is largely mitigated when the stratified databases are utilized.

Further, the geospatial pattern of the observed precipitation (Figures 8a, 9a, and 10a) is obtained by only using
the matched-up samples. These patterns differ from that using all NMQ observation. More importantly, the
average precipitation in1∘ grid box is computed based on the event occurrence, which explains why the large
snowfall amount is evident in the southern United States (Figure 10a).

5.4. Necessity for Using Stratified Databases
It has been demonstrated in the previous sections that retrieved precipitation from a stratified database
agrees better with observations in terms of correlation coefficient and root-mean-square error (rmse), com-
pared with that from the single database. In this section, further analysis is conducted to investigate the
underlying reasons that the stratified databases generate superior results.

The difference of the correlation coefficients between observed and retrieved rain rates from stratified
databases and from the single database is shown in Figure 11a. It is noted that over majority (78%) of the
categories the difference is positive, which indicates that the retrieved rain rates using stratified databases
are better correlated with observations. In addition, the rmse (Figure 11b) are reduced in the vast majority of
the categories.

Indeed, in some categories, using the single database will produce better rainfall retrieval results in terms
of correlation and rmse. Therefore, two representative categories (categories 3 and 31) are chosen, which
stand for the largest negative and largest positive correlation differences, respectively. Although the Bayesian
framework is used to perform the precipitation retrieval in this study, the simple linear regression approach
is used here to demonstrate the fundamental difference of using the single database or stratified databases.
The TB at 183 ± 7 is selected to perform the regression analysis since it is the most sensitive indicator to
the precipitation over land. Choosing other high-frequency channels (e.g., 150 and 91 GHz) will generate
similar results.
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Figure 12. Regression analysis for the category in which the better result is from the stratified database. The solid line
represents the fitted regression curve. (a) Scatterplot between rain rate and H183 ± 7 using the stratified database in the
training data set (2010–2012). (b) Scatterplot between rain rate and H183 ± 7 using the single database in the training
data set (2010–2012). (c) Scatterplot between rain rate and H183 ± 7 using the stratified database in the validation data
set (2013). (d) Regression curves from training data sets in the single database and in the stratified database and from
validation data set for the corresponding category.

Figures 12a and 12b show that scatterplots between rain rates and H183 ± 7 in the stratified database and
single database, respectively. The solid lines stand for the linear regression curves obtained through the least
squares approach. Figure 12c shows the relationship between rain rates and H183 ± 7 in the validation data
set. Similarly, the solid line is the linear regression curve. These three curves are plotted together in Figure 12d,
along with the regression equations. Obviously, both the slopes and the intercepts of the regression lines in
the stratified databases from the training data set and the validation data sets are very close to each other
(Figure 12d). In contrast, the regression curve from the single training database differs dramatically from that
in the validation data set. Therefore, under this circumstance, the stratified database is preferred over the
single database.
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Figure 13. As in Figure 11 except for snowfall.

On the contrary, in category 3 the rain
rate-TB relation in the stratified database
is quite different from that in the valida-
tion data set. Instead, the regression curve
between rain rate and TBs in the valida-
tion data set are more similar to that from
the single database. Under this scenario,
the single database will produce better
retrieval results.

A similar procedure is applied to snowfall
retrieval results. Figure 13 shows that over
vast majority of the categories (92% for cor-
relation and 89% for rmse) the correlation
coefficient is larger and the rmse is smaller
for the result from stratified databases. The
underlying reason for this phenomenon is
similar to that in the rainfall retrieval case
studies (Figures 12 and 14). That is, whether
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Figure 14. As in Figure 12 except for the category in which the better result is from the single database.

the better performance is from the single database or from stratified databases depends on the snow rate-TB
relation in the validation data set if closer to that in the single database or to that in the corresponding
stratified database.

To summarize, over the majority of the categories, the rain rate-TB at H183 ± 7 relations in the validation
data sets are more similar to that in the stratified databases; therefore, overall, better performances are
achieved when stratified databases are utilized.

6. Conclusions and Discussions

In this study, we utilized 4 year NMQ and SSMIS coincident databases to develop a prototype precipitation
retrieval algorithm. Three year data (from 2010 to 2012) are taken as training data sets, while 1 year data
(2013) are taken as a validation data set. The primary objective of this study was to explore the benefits of
using ancillary data to stratify the single database into many smaller but more homogeneous databases. A
requirement in our methodology is to make sure the surface condition and precipitation vertical structure
are as similar as possible for both detection and precipitation rate retrieval processes. Four variables (surface
type, surface temperature, land elevation, and ice layer thickness) are used to stratify the single database into
dozens of smaller databases of similar surface condition and precipitation vertical structures. The performance
using the stratified databases are compared with that using the single database.

The LDA technique is employed for the precipitation detection. For rainfall detection, compared with that
using the single database, the POD using stratified databases increases from 75.9% to 84.0%, corresponding
to a FAR of 0.05. On the other hand, corresponding to the same FAR, the POD for snowfall detection increases
about 12% from 56.0% to 68.0% using stratified databases. In addition, it was found that by including lower
troposphere relative humidity and vertical velocity at 700 hPa (besides the TBs), the POD for snow detection
further increases to 76.4%, which is 20.4% higher than that only using TBs in the single database. However,
including relative humidity and vertical velocity does not have significant influence for the rainfall detection.
It is hypothesized that snowfall occurrence is more sensitive to the large-scale atmospheric backgrounds than
rainfall because it is primarily a stratiform process. We are aware that the only the clear-sky radiances (i.e.,
TBs) are used in the process of data assimilation for MERRA data. More importantly, the relative humidity and
vertical velocity are purely generated from models. Therefore, the better detection performance by adding
relative humidity and vertical velocity is not due to a circular usage of the same TBs.
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The PCA-based Bayesian technique is used to retrieve the precipitation rate after the detection. Compared
with that from the single database, the retrieved rain rate using stratified databases agrees better with obser-
vations, indicated by larger Heidke Skill Score (HSS) in both ends of the rain rates. In particular, there is almost
no skill when using the single database for rain rate larger than 30 mm/h. In contrast, using stratified databases
will generate some skill for heavy rainfall. For the retrieved snow rate, larger HSS is evident throughout the
snowfall range when the stratified databases are utilized.

The correlation coefficient between retrieved rain rates from stratified databases and observations is 0.63,
while it is 0.42 for the rain rates retrieved from the single database. The root-mean-square error is reduced by
about 53.2% from 2.03 to 0.98. The performance of the retrieved rain rate from the single database and strat-
ified databases has also been investigated in the four seasons of 2013. It is found that from spring to fall the
retrieved rain rates using stratified databases are better correlated with observations and the rmse is smaller.
In the winter season, the retrieved results from the single database and stratified databases are comparable,
although the underestimation of the retrieved rain rates from the single database is more severe. For snow-
fall, noticeable improvements have also been observed when stratified databases are employed. Additionally,
due to the smaller dynamic range of the precipitation rate in the winter season, it is less likely to produce
retrieved precipitation rates dramatically further apart from observations since the Bayesian algorithm seeks
the optimal weighted average from the historical databases. This is supported by our results which show only
marginal improvement in the winter season. For our study period the spatial pattern of the rain rate retrieved
using stratified databases agrees better with NMQ observations. There is systematic overestimation over west-
ern United States for the retrieved rain rate from the single database. This overestimation is largely mitigated
when stratified databases are employed.

Furthermore, we also analyzed the underlying reason that using stratified databases generally provides supe-
rior retrieved precipitation results. In essence, performance of the retrieved precipitation rate depends on
whether the TB-precipitation rate in the validate data set is more similar to that in the single database or that in
the corresponding stratified database. It is found that over the majority of the categories the TB-precipitation
rate relations in each category in the validation data set are much closer to that in the corresponding stratified
database. Therefore, over the majority of categories the retrieved precipitation rate from stratified databases
are better correlated with observations and the rmse is smaller. Thus, overall, better performance is achieved
by using stratified databases. Indeed, there exist some categories, the relation between TB and precipita-
tion in the training stratified databases differ from those in the validation data sets, and rather the relation is
more similar to that derived from the single database. With more data being collected, the historical data in
each category will become more representative. Therefore, it is expected the retrieved results from stratified
databases will outperform that from the single database.

This prototype algorithm has the potential to be applied in the global scale. It is highly likely that the
databases generated over the continental United States ground radar observations may not be representative
enough for all precipitation systems around the world, especially for the cloud systems over the tropical and
higher-latitude regions. Along with the successful launch of GPM satellite, which carries both Ka- and Ku-band
precipitation radars and has a quasi-global coverage, the representative issue can be largely alleviated.

We are aware that there exist biases in the NMQ precipitation products. It is not our purpose to define the pre-
cipitation climatology over the targeted region (25∘–50∘N, 70∘–130∘W) using NMQ data. Instead, we attempt
to construct a common database from NMQ data to demonstrate that using stratified databases will signifi-
cantly improve the precipitation retrieval result. In the near future, it may be possible to construct a database
over more diverse climate regimes using observations from dual-frequency precipitation radar on the
GPM satellite.

In addition, how to obtain the boundary values for each selected parameters is also of critical importance for
the algorithm performance. For example, in this work, we simply divided the surface temperature into three
subcategories by using the thresholds corresponding to the 33.3% and 66.7% of the surface temperature.
These boundary values are probably not the optimal ones. How to find the optimal boundary values remains
a challenging issue, and we are currently investigating this problem.

Finally, it is worth mentioning that the most current Goddard profiling algorithm (GPROF2014) has moved
toward using other information to stratify the single database. The three parameters used in GPROF2014 are
surface type, surface skin temperature, and total precipitable water. On the other hand, the parameters used in
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this work are surface type, surface skin temperature, land elevation, and ice layer thickness. Which parameters
can more effectively capture both the cloud vertical structure and surface condition information remains to
be answered. In fact, which ancillary parameters can most effectively stratify the single database and therefore
alleviate the ill-posed inversion problem is probably the most important issue to be considered in the passive
microwave precipitation retrieval algorithm development.
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